Climatic controls of decomposition drive the global biogeography of forest-tree symbioses – Nature.com

0
72
Climatic controls of decomposition drive the global biogeography of forest-tree symbioses – Nature.com

Abstract

The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.

Access optionsAccess options

Subscribe to Journal

Get full journal access for 1 year

$199.00

only $3.90 per issue

All prices are NET prices.

VAT will be added later in the checkout.

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Information regarding symbiotic guild assignments, model selection (including global rasters of our model projections for ectomycorrhizal, arbuscular mycorrhizal and N-fixer proportion of tree basal area) and analyses is available as Supplementary Data. The GFBi database is available upon written request at https://www.gfbinitiative.org/datarequest. Any other relevant data are available from the corresponding authors upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).

  2. 2.

    Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 209, 1705–1719 (2016).

  3. 3.

    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

  4. 4.

    Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013).

  5. 5.

    Cheeke, T. E. et al. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytol. 214, 432–442 (2017).

  6. 6.

    Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

  7. 7.

    Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).

    • 8.

      Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).

    • 9.

      Bennett, J. A. et al. Plant–soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).

    • 10.

      Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).

    • 11.

      Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    • 12.

      van der Heijden, M. G., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

    • 13.

      Binkley, D., Sollins, P., Bell, R., Sachs, D. & Myrold, D. Biogeochemistry of adjacent conifer and alder-conifer stands. Ecology 73, 2022–2033 (1992).

    • 14.

      Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).

    • 15.

      Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical rainforest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).

    • 16.

      Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).

    • 17.

      Houlton, B. Z., Wang, Y.-P., Vitousek, P. M. & Field, C. B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330 (2008).

    • 18.

      Peay, K. G. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu. Rev. Ecol. Evol. Syst. 47, 143–164 (2016).

    • 19.

      Pellegrini, A. F. A., Staver, A. C., Hedin, L. O., Charles-Dominique, T. & Tourgee, A. Aridity, not fire, favors nitrogen-fixing plants across tropical savanna and forest biomes. Ecology 97, 2177–2183 (2016).

    • 20.

      Tuomi, M. et al. Leaf litter decomposition—estimates of global variability based on Yasso07 model. Ecol. Modell. 220, 3362–3371 (2009).

    • 21.

      Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).

    • 22.

      Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239–250 (2019).

    • 23.

      Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    • 24.

      Reich, P. B. et al. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nat. Clim. Change 5, 148 (2015).

    • 25.

      McGroddy, M. E., Daufresne, T. & Hedin, L. O. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85, 2390–2401 (2004).

    • 26.

      Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11006 (2004).

    • 27.

      Corrales, A., Mangan, S. A., Turner, B. L. & Dalling, J. W. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol. Lett. 19, 383–392 (2016).

    • 28.

      Menge, D. N., Lichstein, J. W. & Angeles-Pérez, G. Nitrogen fixation strategies can explain the latitudinal shift in nitrogen-fixing tree abundance. Ecology 95, 2236–2245 (2014).

    • 29.

      Liao, W., Menge, D. N. L., Lichstein, J. W. & Ángeles-Pérez, G. Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America. Glob. Change Biol. 23, 4777–4787 (2017).

    • 30.

      Gei, M. et al. Legume abundance along successional and rainfall gradients in neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).

    • 31.

      Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    • 32.

      Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res. 2, 191 (2013).

    • 33.

      Brundrett, M. C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320, 37–77 (2009).

    • 34.

      Werner, G. D., Cornwell, W. K., Sprent, J. I., Kattge, J. & Kiers, E. T. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat. Commun. 5, 4087 (2014).

    • 35.

      Werner, G. D., Cornwell, W. K., Cornelissen, J. H. & Kiers, E. T. Evolutionary signals of symbiotic persistence in the legume–rhizobia mutualism. Proc. Natl Acad. Sci. USA 112, 10262–10269 (2015).

    • 36.

      Afkhami, M. E. et al. Symbioses with nitrogen-fixing bacteria: nodulation and phylogenetic data across legume genera. Ecology 99, 502 (2018).

    • 37.

      Tedersoo, L. et al. Global database of plants with root-symbiotic nitrogen fixation: Nod DB. J. Veg. Sci. 29, 560–568 (2018).

    • 38.

      Hayward, J. & Hynson, N. A. New evidence of ectomycorrhizal fungi in the Hawaiian Islands associated with the endemic host Pisonia sandwicensis (Nyctaginaceae). Fungal Ecol. 12, 62–69 (2014).

    • 39.

      Lambers, H., Martinoia, E. & Renton, M. Plant adaptations to severely phosphorus-impoverished soils. Curr. Opin. Plant Biol. 25, 23–31 (2015).

    • 40.

      Wang, B. & Qiu, Y.-L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299–363 (2006).

    • 41.

      Soltis, D. E. et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl Acad. Sci. USA 92, 2647–2651 (1995).

    • 42.

      Palosuo, T., Liski, J., Trofymow, J. & Titus, B. Litter decomposition affected by climate and litter quality—testing the Yasso model with litterbag data from the Canadian intersite decomposition experiment. Ecol. Modell. 189, 183–198 (2005).

    • 43.

      Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625 (2014).

    • 44.

      Evans, J. S. & Murphy, M. A. rfUtilities: random forests model selection and performance evaluation. R package version 2.1-3 https://cran.r-project.org/web/packages/rfUtilities/ (2018).

      • 45.

        Core Writing Team et al. (eds) Climate Change 2014 Synthesis Report (IPCC, Geneva, 2014).

        • 46.

          Schepaschenko, D. et al. A dataset of forest biomass structure for Eurasia. Sci. Data 4, 170070 (2017).

        Download references

        Acknowledgements

        This work was made possible by the Global Forest Biodiversity Database, which represents the work of over 200 independent investigators and their public and private funding agencies (see Supplementary Acknowledgements).

        Reviewer information

        Nature thanks Martin Bidartondo, David Bohan and the other anonymous reviewer(s) for their contribution to the peer review of this work.

        Author information

        Author notes

        1. A list of participants and their affiliations appears in the online version of the paper.

        2. These authors contributed equally: B. S. Steidinger, T. W. Crowther, J. Liang.

        Affiliations

        1. Department of Biology, Stanford University, Stanford, CA, USA

          • B. S. Steidinger
          • , M. E. Van Nuland
          •  & K. G. Peay
        2. Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland

          • T. W. Crowther
          • , D. Routh
          •  & Jean-Francois Bastin
        3. Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA

          • J. Liang
          •  & M. Zhou
        4. Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China

          • J. Liang
          • , X. Zhao
          •  & C. Zhang
        5. Department of Zoology, University of Oxford, Oxford, UK

          • G. D. A. Werner
        6. Department of Forest Resources, University of Minnesota, St Paul, MN, USA

          • P. B. Reich
        7. Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia

          • P. B. Reich
        8. Wageningen University and Research, Wageningen, The Netherlands

          • G. Nabuurs
          • , Mathieu Decuyper
          • , Geerten Hengeveld
          • , Martin Herold
          • , Lourens Poorter
          •  & Mart-Jan Schelhaas
        9. Department of Crop and Forest Sciences – Agrotecnio Center (UdL-Agrotecnio), Universitat de Lleida, Lleida, Spain

          • S. de-Miguel
        10. Forest Science and Technology Centre of Catalonia (CTFC), Solsona, Spain

          • S. de-Miguel
        11. Food and Agriculture Organization of the United Nations, Rome, Italy

          • N. Picard
          • , Luca Birigazzi
          •  & Javier G. P. Gamarra
        12. Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France

          • B. Herault
          •  & Plinio Sist
        13. Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d’Ivoire

          • B. Herault
          •  & Irie Casimir Zo-Bi
        14. Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Birmensdorf, Switzerland

          • Meinrad Abegg
          •  & Markus Huber
        15. UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire

          • C. Yves Adou Yao
        16. Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy

          • Giorgio Alberti
        17. Institute of Biometeorology, National Research Council (CNR-IBIMET), Florence, Italy

          • Giorgio Alberti
        18. Spatial Ecology and Conservation Laboratory, Department of Tourism, Recreation and Sport Management, University of Florida, Gainesville, FL, USA

          • Angelica Almeyda Zambrano
        19. Fundacion ConVida, Universidad Nacional Abierta y a Distancia, UNAD, Medellin, Colombia

          • Esteban Alvarez-Davila
        20. Field Museum of Natural History, Chicago, IL, USA

          • Patricia Alvarez-Loayza
          • , Kuswata Kartawinata
          •  & Nigel C. A. Pitman
        21. Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA

          • Luciana F. Alves
        22. Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany

          • Christian Ammer
          •  & Peter Schall
        23. Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway

          • Clara Antón-Fernández
        24. Museo de Historia Natural Noel Kempff Mercado, Universidad Autonoma Gabriel Rene Moreno, Santa Cruz de la Sierra, Bolivia

          • Alejandro Araujo-Murakami
          • , Luzmila Arroyo
          • , Timothy Killeen
          •  & Alexander Parada-Gutierrez
        25. European Commission, Joint Research Centre, Ispra, Italy

          • Valerio Avitabile
        26. UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Portuguesa, Venezuela

          • Gerardo Aymard
        27. School of Geography, University of Leeds, Leeds, UK

          • Timothy Baker
          • , Roel Brienen
          • , Simon Lewis
          •  & Oliver Phillips
        28. Department of Geomatics, Forest Research Institute, Raszyn, Poland

          • Radomir Bałazy
          •  & Krzysztof Stereńczak
        29. Naturalis Biodiversity Centre, Leiden, The Netherlands

          • Olaf Banki
          •  & Hans ter Steege
        30. Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil

          • Jorcely Barroso
        31. Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC, USA

          • Meredith Bastian
        32. Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda

          • Robert Bitariho
        33. Isotope Bioscience Laboratory – ISOFYS, Ghent University, Ghent, Belgium

          • Pascal Boeckx
        34. Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, Suceava, Romania

          • Olivier Bouriaud
        35. Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil

          • Pedro H. S. Brancalion
          • , Ricardo Cesar
          •  & Vanessa Moreno
        36. Bavarian State Institute of Forestry, Freising, Germany

          • Susanne Brandl
        37. Manchester Metropolitan University, Manchester, UK

          • Francis Q. Brearley
        38. Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany

          • Helge Bruelheide
        39. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany

          • Helge Bruelheide
        40. Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy

          • Filippo Bussotti
        41. Biological Institute, Tomsk State University, Tomsk, Russia

          • Roberto Cazzolla Gatti
        42. Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia

          • Goran Cesljar
        43. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA

          • Robin Chazdon
          •  & Cory Merow
        44. Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia

          • Robin Chazdon
          • , John Herbohn
          • , Andrew Robert Marshall
          •  & Sharif A. Mukul
        45. Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada

          • Han Y. H. Chen
          •  & Eric Searle
        46. Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China

          • Han Y. H. Chen
        47. Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland

          • Chelsea Chisholm
        48. IFER – Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic

          • Emil Cienciala
        49. Global Change Research Institute CAS, Brno, Czech Republic

          • Emil Cienciala
        50. Nicholas School of the Environment, Duke University, Durham, NC, USA

          • Connie J. Clark
          •  & John R. Poulsen
        51. Department of Biology, University of Missouri-St Louis, St Louis, MO, USA

          • David Clark
        52. Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil

          • Carlos A. Joly
        53. Smithsonian Tropical Research Institute, Balboa, Panama

          • Richard Condit
          •  & Ervan Rutishauser
        54. Department of Plant Sciences, University of Cambridge, Cambridge, UK

          • David Coomes
        55. Andes to Amazon Biodiversity Program, Madre de Dios, Peru

          • Fernando Cornejo Valverde
        56. Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Durango, Mexico

          • Jose J. Corral-Rivas
        57. Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY, USA

          • Philip Crim
        58. Department of Biology, West Virginia University, Morgantown, WV, USA

          • Philip Crim
          •  & Jonathan Cumming
        59. Biology Department, Concordia University, Montreal, Quebec, Canada

          • Selvadurai Dayanandan
        60. Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil

          • André L. de Gasper
        61. Cirad, UMR EcoFoG, Kourou, French Guiana

          • Géraldine Derroire
          •  & Aurélie Dourdain
        62. Department of Geographical Sciences, University of Maryland, College Park, MD, USA

          • Ben DeVries
        63. Institute of Forestry, Belgrade, Serbia

          • Ilija Djordjevic
          •  & Radovan Nevenic
        64. National Institute of Amazonian Research, Manaus, Brazil

          • Amaral Iêda
        65. IRET, Herbier National du Gabon (CENAREST), Libreville, Gabon

          • Nestor Laurier Engone Obiang
        66. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA

          • Brian Enquist
          •  & Brian Maitner
        67. The Santa Fe Institute, Santa Fe, NM, USA

          • Brian Enquist
        68. Department of Environment and Science, Queensland Herbarium, Toowong, Queensland, Australia

          • Teresa Eyre
          • , Victor Neldner
          •  & Michael Ngugi
        69. Ecole de Foresterie et Ingénierie du Bois, Université Nationale d’Agriculture, Ketou, Benin

          • Adandé Belarmain Fandohan
        70. Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic

          • Tom M. Fayle
        71. Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK

          • Ted R. Feldpausch
        72. Natural Resources Institute Finland (Luke), Joensuu, Finland

          • Leena Finér
        73. Institute of Plant Sciences, University of Bern, Bern, Switzerland

          • Markus Fischer
        74. Forest Research Institute Malaysia, Kuala Lumpur, Malaysia

          • Christine Fletcher
        75. Department of Forest Resource Management, Swedish University of Agricultural Sciences SLU, Umea, Sweden

          • Jonas Fridman
          •  & Bertil Westerlund
        76. Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Italy

          • Lorenzo Frizzera
          • , Damiano Gianelle
          •  & Mirco Rodeghiero
        77. School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA

          • Henry B. Glick
          •  & Peter Umunay
        78. Royal Botanic Garden Edinburgh, Edinburgh, UK

          • David Harris
          •  & Axel Dalberg Poulsen
        79. Department of Plant Sciences, University of Oxford, Oxford, UK

          • Andrew Hector
        80. Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany

          • Andreas Hemp
        81. Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UK

          • Annika Hillers
        82. Instituto de Investigaciones de la Amazonía Peruana, Iquitos, Peru

          • Eurídice N. Honorio Coronado
        83. Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa

          • Cang Hui
        84. Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa

          • Cang Hui
        85. Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea

          • Hyunkook Cho
          •  & Ilbin Jung
        86. Institut Agronomique néo-Calédonien (IAC), Equipe Sol & Végétation (SolVeg), Nouméa, New Caledonia

          • Thomas Ibanez
        87. Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan

          • Nobuo Imai
        88. Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland

          • Andrzej M. Jagodzinski
          •  & Jacek Oleksyn
        89. Poznań University of Life Sciences, Department of game Management and Forest Protection, Poznań, Poland

          • Andrzej M. Jagodzinski
        90. Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland

          • Bogdan Jaroszewicz
        91. Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark

          • Vivian Johannsen
          •  & Sebastian Kepfer-Rojas
        92. Centre for Environment and Life Sciences, CSIRO Land and Water, Floreat, Western Australia, Australia

          • Tommaso Jucker
        93. Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia

          • Viktor Karminov
          • , Olga Martynenko
          •  & Petr Ontikov
        94. CAVElab – Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium

          • Elizabeth Kearsley
          •  & Hans Verbeeck
        95. CTFS-ForestGEO, Smithsonian Tropical Research Institute, Balboa, Panama

          • David Kenfack
        96. Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA

          • Deborah Kennard
        97. School of Natural and Built Environments and Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia

          • Gunnar Keppel
        98. Department of Botany, Dr Harisingh Gour Central University, Sagar, India

          • Mohammed Latif Khan
        99. Department of Forest Sciences, Seoul National University, Seoul, South Korea

          • Hyun Seok Kim
          •  & Minjee Park
        100. Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea

          • Hyun Seok Kim
        101. National Center for Agro Meteorology, Seoul, South Korea

          • Hyun Seok Kim
        102. Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea

          • Hyun Seok Kim
        103. Graduate School of Agriculture, Kyoto University, Kyoto, Japan

          • Kanehiro Kitayama
        104. Institute for World Forestry, University of Hamburg, Hamburg, Germany

          • Michael Köhl
          •  & Philip Mundhenk
        105. Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia

          • Henn Korjus
          • , Diana Laarmann
          •  & Mait Lang
        106. Ecosystems Services and Management, International Institute for Applied Systems Analysis, Laxenburg, Austria

          • Florian Kraxner
          • , Dmitry Schepaschenko
          •  & Anatoly Shvidenko
        107. Department of Geography, University College London, London, UK

          • Simon Lewis
        108. Faculty of Forestry, Qingdao Agricultural University, Qingdao, China

          • Huicui Lu
        109. Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russia

          • Natalia Lukina
          •  & Elena Tikhonova
        110. School of Geography, University of Oxford, Oxford, UK

          • Yadvinder Malhi
        111. UMR EcoFoG, AgroParisTech, Kourou, France

          • Eric Marcon
        112. Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil

          • Beatriz Schwantes Marimon
          •  & Ben Hur Marimon-Junior
        113. Department of Environment & Geography, University of York, York, UK

          • Andrew Robert Marshall
        114. Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania

          • Emanuel Martin
        115. Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico

          • Jorge A. Meave
        116. Universidad del Tolima, Ibagué, Colombia

          • Omar Melo-Cruz
        117. Colegio de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia

          • Casimiro Mendoza
        118. Jardín Botánico de Missouri, Oxapampa, Peru

          • Abel Monteagudo Mendoza
          •  & Rodolfo Vasquez Martinez
        119. Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru

          • Abel Monteagudo Mendoza
        120. Department of Environmental Management, School of Environmental Science and Management, Independent University Bangladesh, Dhaka, Bangladesh

          • Sharif A. Mukul
        121. Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico

          • Maria G. Nava-Miranda
        122. Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador

          • David Neill
        123. Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland

          • Pascal Niklaus
          • , Philippe Saner
          •  & Bernhard Schmid
        124. Forestry School, Tecnológico de Costa Rica TEC, Cartago, Costa Rica

          • Edgar Ortiz-Malavasi
        125. Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA

          • Yude Pan
        126. Centre for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada

          • Alain Paquette
        127. V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia

          • Elena Parfenova
          •  & Nadja Tchebakova
        128. Department of Forestry, World Research Institute, Washington, DC, USA

          • Marc Parren
        129. Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India

          • Narayanaswamy Parthasarathy
        130. Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Rio Gallegos, Argentina

          • Pablo L. Peri
        131. School of Social Sciences and Psychology (Urban Studies), Western Sydney University, Penrith, New South Wales, Australia

          • Sebastian Pfautsch
        132. Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil

          • Maria Teresa Piedade
          • , Jochen Schöngart
          •  & Natalia Targhetta
        133. Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil

          • Daniel Piotto
          •  & Samir Rolim
        134. Jardín Botánico de Medellín, Medellín, Colombia

          • Irina Polo
        135. Chair for Forest Growth and Yield Science, TUM School for Life Sciences, Technical University of Munich, Munich, Germany

          • Hans Pretzsch
        136. Universidad Nacional de la Amazonía Peruana, Iquitos, Peru

          • Freddy Ramirez Arevalo
        137. Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida & Corporación COL-TREE, Medellín, Colombia

          • Zorayda Restrepo-Correa
        138. Department of Biological Sciences, Boise State University, Boise, ID, USA

          • Anand Roopsind
        139. Tropical Biodiversity Section, MUSE – Museo delle Scienze, Trento, Italy

          • Francesco Rovero
        140. Department of Biology, University of Florence, Florence, Italy

          • Francesco Rovero
        141. Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India

          • Purabi Saikia
        142. Faculty of Biology, Geobotany, University of Freiburg, Freiburg im Breisgau, Germany

          • Michael Scherer-Lorenzen
        143. National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia

          • Vladimír Seben
        144. Université de Lorraine, AgroParisTech, Inra, Silva, Nancy, France

          • Josep M. Serra-Diaz
        145. Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Bioscience, Aarhus University, Aarhus, Denmark

          • Josep M. Serra-Diaz
          •  & Jens-Christian Svenning
        146. Departamento de Biología, Universidad de la Serena, La Serena, Chile

          • Javier Silva-Espejo
        147. Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil

          • Marcos Silveira
        148. Guyana Forestry Commission, Georgetown, French Guiana

          • James Singh
        149. Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam

          • Ferry Slik
        150. Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers’ Training College, University of Yaoundé, Yaoundé, Cameroon

          • Bonaventure Sonké
        151. Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil

          • Alexandre F. Souza
        152. Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark

          • Jens-Christian Svenning
        153. Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic

          • Miroslav Svoboda
        154. Systems Ecology, Free University Amsterdam, Amsterdam, The Netherlands

          • Hans ter Steege
        155. Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, French Guiana

          • Raquel Thomas
        156. Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Ekaterinburg, Russia

          • Vladimir Usoltsev
        157. LINCGlobal, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain

          • Fernando Valladares
        158. Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany

          • Fons van der Plas
        159. Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam

          • Tran Van Do
        160. Cirad, UMR-AMAP, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France

          • Philippe Birnbaum
        161. Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Vila Real, Portugal

          • Helder Viana
        162. Agricultural High School, Polytechnic Institute of Viseu, Viseu, Portugal

          • Helder Viana
        163. Environmental Studies and Research Center, University of Campinas, UNICAMP, Campinas, Brazil

          • Simone Vieira
        164. Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa

          • Klaus von Gadow
        165. Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China

          • Hua-Feng Wang
          •  & Zhi-Xin Zhu
        166. Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA

          • James Watson
        167. Manaaki Whenua–Landcare Research, Lincoln, New Zealand

          • Susan Wiser
        168. Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany

          • Florian Wittmann
        169. Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname

          • Verginia Wortel
        170. Tropenbios International, Wageningen, The Netherlands

          • Roderick Zagt
        171. Polish State Forests, Coordination Center for Environmental Projects, Warsaw, Poland

          • Tomasz Zawila-Niedzwiecki
        172. Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil

          • Gabriel Colletta
        173. Spatial Ecology and Conservation Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA

          • Eben Broadbent
        174. Flamingo Land Ltd, Kirby Misperton, UK

          • Andrew Robert Marshall
        175. Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele all’Adige, Italy

          • Mirco Rodeghiero
        176. Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia

          • Annika Hillers
        177. Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile

          • Christian Salas-Eljatib
        178. Laboratorio de Biometria, Universidad de La Frontera, Temuco, Chile

          • Christian Salas-Eljatib
        179. Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway

          • Douglas Sheil

        Authors

        1. Search for B. S. Steidinger in:

        2. Search for T. W. Crowther in:

        3. Search for J. Liang in:

        4. Search for M. E. Van Nuland in:

        5. Search for G. D. A. Werner in:

        6. Search for P. B. Reich in:

        7. Search for G. Nabuurs in:

        8. Search for S. de-Miguel in:

        9. Search for M. Zhou in:

        10. Search for N. Picard in:

        11. Search for B. Herault in:

        12. Search for X. Zhao in:

        13. Search for C. Zhang in:

        14. Search for D. Routh in:

        15. Search for K. G. Peay in:

        Consortia

        1. GFBI consortium

        Contributions

        K.G.P. and T.W.C. conceived the study; T.W.C., J.L., P.B.R., G.N., S.d.-M., M.Z., N.P., B.H., X.Z. and C.Z. conceived and organized the GFBi database; K.G.P., B.S.S., G.D.A.W. and M.E.V.N. compiled the symbiosis database; B.S.S. carried out the primary data analysis; M.E.V.N. and D.R. contributed to data compilation and analysis; B.S.S., T.W.C., M.E.V.N. and K.G.P. wrote the initial manuscript; B.S.S., T.W.C., J.L., M.E.V.N., G.D.A.W., P.B.R., G.N., S.d.-M., M.Z., N.P., B.H., X.Z., C.Z. and K.G.P. made substantial revisions to all versions of the manuscript; all other named authors provided forest inventory data and commented on the manuscript.

        Competing interests

        The authors declare no competing interests.

        Corresponding authors

        Correspondence to
        T. W. Crowther or J. Liang or K. G. Peay.

        Supplementary information

        1. Supplementary Information

          This file contains Supplementary Tables 1–8 and Supplementary Figures 1–26.

        2. Reporting Summary

        3. Supplementary Information

          This file contains Supplementary Acknowledgments.

        4. Supplementary Data

          This zip folder contains Supplementary Data files and a guide showing the climatic controls of decomposition drive the global biogeography of forest tree symbioses.

        Comments

        By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

        Read More

        LEAVE A REPLY

        Please enter your comment!
        Please enter your name here